Selective Exposure of the V=O Species on the Surface of Vanadium Oxide Supported on Titania and Alumina

By MAKOTO INOMATA, AKIRA MIYAMOTO,* and YUICHI MURAKAMI

(Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Nagoya 464, Japan)

Summary By measuring the quantity of surface V=O species on V_2O_5 -TiO₂ and V_2O_5 -Al₂O₃ catalysts containing various amounts of V_2O_5 , we have found that, for V_2O_5 -TiO₂ catalysts, the (010) face of V_2O_5 is selectively exposed to the surface but, for V_2O_5 -Al₂O₃ and unsupported catalysts, various crystal faces of V_2O_5 are exposed in addition to the (010) face.

THE effect of TiO₂ supports on promoting partial oxidations of hydrocarbons on vanadium oxide is currently a topic of investigation.¹⁻³ Although the role of the surface V=O species as an active site has been studied, quantitative measurements of the number of surface V=O species on supported V₂O₅ catalysts have not been carried out. Recently, use of the rectangular pulse technique⁴ has been proposed to determine the quantity of surface V=O species on unsupported V₂O₅ catalysts. This method is based on the introduction of a mixture of NO and NH_a which comprises the rectangular pulse (the pulse width is usually 60 s) and the detection of the concentration profile of N_2 produced in equation (1). Here, this method was applied

$$V=O + NO + NH_3 \rightarrow V-OH + N_2 + H_2O \qquad (1)$$

to investigate the surface structure of V_2O_5 on TiO_2 and Al_2O_3 carriers.

 TiO_2 composed of anatase with a small amount of rutile was prepared by calcination of TiO_2 (Nippon Aerosil) in O_2 at 773 K. Al_2O_3 was obtained commercially (Sumitomo γ -Al₂O₃). The BET surface areas of TiO_2 and Al_2O_3 were 40.0 and 190.5 m² g⁻¹, respectively. Vanadium oxide supported on TiO_2 and Al_2O_3 carriers was prepared by impregnating the carriers with an oxalic acid solution of ammonium metavanadate followed by calcination at 773 K in a stream of O_2 . The quantity of surface V=O species on the catalysts was measured using the rectangular pulse technique described previously.⁴ Since the V=O species is located on the (010) face of the V_2O_5 crystal and the surface density of the V=O species in the (010) face is known to be $4.872 \text{ nm}^{-2.5}$ the area of the (010) face of V₂O₅ can be calculated from the number of surface V=O species.

FIGURE. Ratio of the area of the (010) face of $V_2O_5[S_{(010)}]$ to the BET surface area $[S_{BET}]$ for V_2O_5 -TiO₂ (\bigcirc) and V_2O_5 -Al₂O₃ (\bigcirc) catalysts with various contents of V_2O_5 . 0 mol% of V_2O_5 : carriers only; 100 mol% of V_2O_5 : unsupported V_2O_5 .

- ¹ D. J. Cole, C. F. Cullis, and D. J. Hucknall, *J.C.S. Faraday I*, 1976, 72, 2185. ² G. C. Bond, A. J. Sárkány, and G. D. Parfitt, *J. Catalysis*, 1979, 57, 176. ³ M. Akimoto, M. Usami, and E. Echigoya, *Bull. Chem. Soc. Japan*, 1978, 51, 2195.

- ⁴ A. Miyamoto, Y. Yamazaki, M. Inomata, and Y. Murakami, Chem. Letters, 1978, 1355.
- ⁵ A. Byström, K. A. Wilhelmi, and O. Bronzen, Acta Chem. Scand., 1950, 4, 1119.
- ⁶ A. Vejux and P. Courtine, J. Solid State Chem., 1978, 23, 93.

J.C.S. Снем. Сомм., 1979

The Figure shows the area of the (010) face of V_2O_5 as a percentage of the total surface area as measured by the BET method. For V_2O_5 -TiO₂ catalysts, as the content of V_2O_5 increases, the fraction occupied by the (010) face increases linearly, indicating that the surface of $\mathrm{TiO}_{\mathbf{2}}$ is gradually covered by V_2O_5 . When the V_2O_5 content was 10 mol%, the (010) face reached its maximum fraction of the total surface area (90%) and the specific area of the (010) face of V_2O_5 (26.4 m² g⁻¹) was ca. 10 times that of unsupported V_2O_5 (2.7 m² g⁻¹). When the V_2O_5 content was further increased, the fraction of the surface occupied by the (010) face decreased to reach the value of unsupported V₂O₅ (50% at 100 mol% V₂O₅ content) where various crystal faces of V_2O_5 are thought to be exposed in addition to the (010) face. In other words, when the V_2O_5 content is 10 mol%, $\rm V_2O_5$ covers the surface of TiO_2 to expose selectively the (010) face to the surface. However, as shown in the Figure, the fraction of the surface occupied by the (010) face of V₂O₅-Al₂O₃ catalysts did not exceed 50%, the value of unsupported V_2O_5 catalyst, at any $\rm V_2O_5$ content. These data clearly indicate that on $\rm V_2O_5 \mathrm{TiO}_2$ catalysts, the V=O species is selectively exposed to the surface by the interaction of the (010) face of V_2O_5 with the surface of the TiO₂ support,⁶ whereas such an effect cannot be expected for V₂O₅-Al₂O₃ catalysts.

(Received, 2nd July 1979; Com. 708.)