Selective Exposure of the V=O Species on the Surface of Vanadium Oxide Supported on Titania and Alumina

By MAKOTO INOMATA, AKIRA MIYAMOTO,* and YUICHI MURAKAMI

(Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Nagoya **464,** *Japan)*

Summary By measuring the quantity of surface V=O species on $V_2O_5-TiO_2$ and $V_2O_5-Al_2O_3$ catalysts containing various amounts of V_2O_5 , we have found that, for V_2O_5 -TiO₂ catalysts, the (010) face of V_2O_5 is selectively exposed to the surface but, for $V_2O_5 - Al_2O_3$ and unsupported catalysts, various crystal faces of V_2O_5 are exposed in addition to the (010) face.

THE effect of $TiO₂$ supports on promoting partial oxidations of hydrocarbons on vanadium oxide is currently a topic of investigation.¹⁻³ Although the role of the surface V=O species as an active site has been studied, quantitative measurements of the number of surface V=O species on supported V_2O_5 catalysts have not been carried out. Recently, use of the rectangular pulse technique4 has been proposed to determine the quantity of surface V=O species on unsupported V_2O_5 catalysts. This method is based on the introduction of a mixture of NO and $NH₃$ which

comprises the rectangular pulse (the pulse width is usually 60 s) and the detection of the concentration profile of N_2 produced in equation (1). Here, this method was applied

$$
V = O + NO + NH_3 \rightarrow V-OH + N_2 + H_2O
$$
 (1)

to investigate the surface structure of V_2O_5 on TiO₂ and Al_2O_3 carriers.

TiO, composed of anatase with a small amount of rutile was prepared by calcination of $TiO₂$ (Nippon Aerosil) in O_2 at 773 K. Al₂ O_3 was obtained commercially (Sumitomo γ -Al₂O₃). The BET surface areas of TiO₂ and Al₂O₃ were **40-0** and **190.5** rn2 g-1, respectively. Vanadium oxide supported on $TiO₂$ and $Al₂O₃$ carriers was prepared by impregnating the carriers with an oxalic acid solution of ammonium metavanadate followed by calcination at **773 I<** in **a** stream of *0,.* The quantity of surface V=O species on the catalysts was measured using the rectangular pulse technique described previously.⁴ Since the V= O species is

located on the (010) face of the V_2O_5 crystal and the surface density of the **V=O** species in the (010) face is known to be 4.872 nm⁻²,⁵ the area of the (010) face of V_2O_5 can be

FIGURE. Ratio of the area of the (010) face of $V_2O_5[S_{(010)}]$ to
the BET surface area [S_{BET}] for V_2O_5 -TiO₂ (\bigcirc) and V_2O_5 -Al₂O₃.
(\bigcirc) catalysts with various contents of V_2O_5 . 0 mol% of V_2O_5 carriers only; 100 mol% of V₂O₆: unsupported V₂O₆.

various crystal faces of V_2O_5 are thought to be exposed in addition to the (010) face. In other words, when the V_2O_5 content is 10 mol%, V_2O_5 covers the surface of TiO₂ to expose selectively the (010) face to the surface. However, as shown in the Figure, the fraction of the surface occupied by the (010) face of $V_2O_5 - Al_2O_3$ catalysts did not exceed *50%,* the value of unsupported **V,05** catalyst, at any V_2O_5 content. These data clearly indicate that on V_2O_5 -TiO₂ catalysts, the V=O species is selectively exposed to the surface by the interaction of the (010) face of V_2O_5 with the surface of the $TiO₂$ support,⁶ whereas such an effect cannot be expected for $V_2O_5 - Al_2O_3$ catalysts.

The Figure shows the area of the (010) face of V_2O_5 as a percentage of the total surface area as measured by the BET method. For V_2O_5 -TiO₂ catalysts, as the content of V_2O_5 increases, the fraction occupied by the (010) face increases linearly, indicating that the surface of $TiO₂$ is gradually covered by V_2O_5 . When the V_2O_5 content was 10 mol $\frac{9}{6}$, the (010) face reached its maximum fraction of the total surface area **(90%)** and the specific area of the (010) face of V_2O_5 (26.4 m² g⁻¹) was *ca*. 10 times that of unsupported V_2O_5 (2.7 m² g⁻¹). When the V_2O_5 content was further increased, the fraction of the surface occupied by the (010) face decreased to reach the value of unsupported V_2O_5 (50% at 100 mol% V_2O_5 content) where

(Received, 2nd July **1979;** *Corn.* **708.)**

- ¹ D. J. Cole, C. F. Cullis, and D. J. Hucknall, *J.C.S. Faraday I*, 1976, **72**, 2185.
² G. C. Bond, A. J. Sárkány, and G. D. Parfitt, *J. Catalysis*, 1979, **57**, 176.
³ M. Akimoto, M. Usami, and E. Echigoya, *Bull. C*
-
-
- **A. Miyamoto, Y. Yamazaki, M. Inomata, and Y. Murakami,** *Chem. Letters,* **1978, 1355.**
- **A. Bystrom, K. A. Wilhelmi, and 0. Bronzen,** *Acta Chem. Scand.,* **1950, 4, 1119.** * **A. Vejux and P. Courtine,** *J. Solid State Chem.,* **1978,** *23,* **93.**
-

1010 J.C.S. Снем. Сомм., 1979